Bridging the gap between data-centric disciplines An undergraduate education perspective

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Never tweet late in the night

Mattias Villani @matvil · Oct 21 I will regret this slide in the morning.

OO Machine Learning vs Traditional Statistics

000

		State	MI
		Stats	C25Z
	Parameter inference		
	Prediction	-	9
	Decision making		
	Interpreting models	••	\mathbf{O}
	Interpreting decisions	60	(
	Flexible models and regularization		••
	Rigorous theory	••	
	Causality		
	Programming	6	5
) 40	1.4K	J	di .

Caricatures to initiate discussions about education

📕 Mostly everyone's response: 😍 or 😂 or at least 😂.

Very few 9 , and then: I am an X, and I certainly know Y!

Good caricatures are recognizable and have some truth.

The tweet originated from thoughts about basic courses in data-centric subjects.

How can we bridge the gap between subjects?

Who is this emoji clown? 😨

- BSc, MSc, PhD in Statistics (2000), Stockholm University.
 - Researcher and Adviser at Central Bank of Sweden (2003-11).
- Since then: neuroimaging, text, robotics, transportation.
- **Professor of Statistics** at LiU (2011-) and SU (2018-).
- Developed many statistics and machine learning courses: Machine learning, Bayesian learning, Advanced ML, Text mining, ML for industry, Statistics for engineers etc.
 - Built up and lead a statistics and machine learning division in a computer science department.

"I develop computationally efficient Bayesian methods for inference, prediction and decision making with flexible probabilistic models."

bb Machine Learning vs Traditional Statistics **bb**

	Stats	ML
Parameter inference	•	2 ² Z
Prediction		•
Decision making	00	•
Interpreting models	••	\bigcirc
Interpreting decisions	00	1
Checking model assumptions	T	<u>~~</u>
Flexible models and regularization		•
Rigorous theory	•	_
Causality		
Programming	**	•
Scalability, big data	@	•
Real-time/Online	<u>~</u>	Ü
Data collection and experimental design	.	•••

Naming of regression coefficients (Neil Lawrence):

- **Stats**: fancy greek letters like β . **Parameters are key players**.
- **ML**: weights *w*. Parameters are **just weights in prediction**.
- Interpreting parameters \implies focus on linear models.
- **Feature construction is hard** for modern problems.
- **Nonlinear models** and methods for interpreting $\frac{\partial \mathbb{E}(y|\mathbf{x})}{\partial x_j}$.
- The anticlimax of stats: testing for uninteresting H₀: θ = 0.
 Let us at least focus on effect sizes.

Prediction

ML:

- **Prediction** is **the** aim.
- Models are evaluated by predictive performance.
- Training-Validation-Test split of the data is standard.
- **Regularized parameter-rich models** best for prediction.
- Stats:
 - Prediction is essentially only in time series courses.
 - Not much used for model selection (Box-Jenkins still rules).
 - Prediction is a tiny part of regression courses.
 - Almost no discussion about:
 - generalization performance
 - **bias-variance trade-off** for predictions
 - **cross-validation** and similar methods.

Mattias Villani

Decision making

Stats (blushing emoji):

- Decision making under uncertainty is well developed in Stats
- but have forgotten about it, definitely in education.
- Needed Decision making as end goal.
- **Bayesian inference** is key here.

ML:

- Automatic decision making is in focus.
- Loves decisions, but often stops short at predictions.
- Uncertainty quantification is crucial for decisions. Typically ignored in deep learning.
- **Bayesian inference** is key here.

Stats: loves scientifically grounded interpretable models.

ML: any Black Box with accurate predictions is fine.

ML debate:

 very accurate black box vs
 less accurate interpretable model.

SciML:

- scientifically grounded model (e.g. from physics or economics)
 +
- added flexibility by neural networks.

Interpreting decisions

Stats: 😳 ML: 😘

- Stats: interpreting decisions?
- ML: explain why a decision was made. Explainable AI.
- Hard to explain decisions from black box models.
- ML flirt: exploring decisions locally interpretable models.
- Focusing on decisions gives discipline in modeling:
 - Will the addition of this model feature affect decisions?
 - "Effect sizes" with respect to decisions.
 - > Al. Real-time decisions limit the class of possible models.

Stats:

- heavily trained in checking model assumptions
- understanding of data quality and its influence on modeling.

Stats: 😎 ML: 🤫

too much driven by getting correct distributions for tests.

ML's focus on evaluating models by predictive performance

- often leads to neglect in model checking
- forgets to explore the data
- **b** gives models that are complicated and hard to interpret.

Stats: 😨 ML: 🙂

Stats:

- **flexibility** is often measured by the **number of parameters**.
- regularization (e.g. Lasso) to penalize complexity is not part of our DNA.
- Many statisticians develop regularization methods, but it is only presented in 'Statistical Learning' courses.
- overfitting with flexible models is an exaggerated fear/concern.
- ML:
 - Flexible models is the standard
 - ► Regularization from day one
 - Connection to predictive performance helps here

Rigorous theory

Stats:

- long history of strong theory deeply rooted in probability.
- empirical success is not as highly valued, math is king.
- models are often simplified to fit the maths.
 Box: 'mathematistry'.
- The statistical theory has led to better understanding in ML.
- ML:
 - empirical performance is everything valued, theory is less of a requirement.
 - but has its own body of theory, often proving certain guarantees on the procedure.
 - more rigorous on algorithmic performance.
 - ML needs a probabilistic perspective to make decisions correctly.

- Causality is starting to become a hot topic in both fields, at least in research.
- Scientific discoveries must be causal.
- Also robots need to learn cause and effect to learn tasks well. Learning by interacting with environment.
 - Different approaches in Stats and ML, but perhaps merging?

Programming

- Stats: programming skills have not been valued and taught.
- Software development virtually non-existent in Stats education.
- Yet, statistical practice is now very relient on these skills.
- Data scientists know useful software engineering methods and tools which impresses at job interviews.
- R and its package culture has advanced programming skills among statisticians. But it is still a weak point.
 - ML is an engineering field where professional programming and software development is valued and taught.

Scalability, big data

- Stats is all about statistical efficiency ... but very little about computational efficiency.
- **Big datasets** are still scary.
- Non-tabular data (image, text, sound) are rare in stats education.
 - Needed in stats education:
 - basic notions about computational complexity of algorithms
 - numerical maths, e.g. computer arithmetic, lin alg, sparsity
 - handling large datasets.
 - handling messy datasets.
- ML:
 - often extensive training in algorithms and their complexity.
 - databases and big data frameworks
 - often at least one course in numerical methods
 - need to learn that data quality also matters.

Stats:

- rarely even thinks about real-time requirements.
- **online learning** = Kalman filter ... at best.
- reinforcement learning in ML is modeled by Markov decision processes. That is statistics, but never taught.
- ML:
 - physical systems (e.g. robots) make decisions in real-time.
 - > a lot of research on online real-time learning.
 - not always really real-time for real machines in real world.
 - perpetually young field since (embedded) hardware develops rapidly.

Data & experimental design

Stats:

- design of experiments is an old speciality.
- **survey sampling studies data collection**.
- **b** data quality is well understood.
- GIGO well understood.
- ML:
 - massive data in industry, but often collected for other reasons.

Stats: 😎 ML: 🤫

- collected data often unable to answer relevant questions.
- poor data quality, and poor understanding of GIGO.
- Statistics/ML is not a magic wand.
- Statisticians in experimental design and survey sampling need to get involved in ML problems.
- **active learning** = sequential experimental designs.

Unifying data-centric disciplines

Suggestions for Statistics education:

- More focus on prediction and decisions.
- (Much) less focus on hypothesis testing.
- Regression early and a lot.
- Nonlinear models and regularization early.
- Downplay unbiasedness. Bias-Variance trade-off.
- Computational thinking, scalability and real-time problems.
- Make programming second nature. Tools matter.
- Bayesian (likelihood) inference is unifying across disciplines.

Suggestions for Machine learning/Data Science education:

- Data quality and experimental design.
- Model assessment beyond predictive performance.
- Probability distributions for data instead of cost minimization.
- Uncertainty quantification for decision making.